Inflammatory, Oxidative Stress, and Apoptosis Effects in Zebrafish Larvae after Rapid Exposure to a Commercial Glyphosate Formulation

BIOMEDICINES(2021)

引用 19|浏览0
暂无评分
摘要
Glyphosate-based herbicides (GBH) are the most used herbicides in the world, carrying potentially adverse consequences to the environment and non-target species due to their massive and inadequate use. This study aimed to evaluate the effects of acute exposure to a commercial formulation of glyphosate, Roundup(R) Flex (RF), at environmentally relevant and higher concentrations in zebrafish larvae through the assessment of the inflammatory, oxidative stress and cell death response. Transgenic Tg(mpxGFP)i114 and wild-type (WT) zebrafish larvae (72 h post-fertilisation) were exposed to 1, 5, and 10 mu g mL(-1) of RF (based on the active ingredient concentration) for 4 h 30 min. A concentration of 2.5 mu g mL(-1) CuSO4 was used as a positive control. Copper sulphate exposure showed effectiveness in enhancing the inflammatory profile by increasing the number of neutrophils, nitric oxide (NO) levels, reactive oxygen species (ROS), and cell death. None of the RF concentrations tested showed changes in the number of neutrophils and NO. However, the concentration of 10 mu g a.i. mL(-1) was able to induce an increase in ROS levels and cell death. The activity of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)), the biotransformation activity, the levels of reduced (GSH) and oxidised (GSSG) glutathione, lipid peroxidation (LPO), lactate dehydrogenase (LDH), and acetylcholinesterase (AChE) were similar among groups. Overall, the evidence may suggest toxicological effects are dependent on the concentration of RF, although at concentrations that are not routinely detected in the environment. Additional studies are needed to better understand the underlying molecular mechanisms of this formulation.
更多
查看译文
关键词
glyphosate, Roundup, commercial formulation, inflammation, oxidative stress
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要