Psychophysical measures of tonotopic selectivity in cats and humans

semanticscholar(2021)

Cited 0|Views4
No score
Abstract
Sound spectra are represented by patterns of activity along the tonotopic axis ofthe cochlea. Cochlear implants can transmit spectra by stimulating tonotopicallyappropriate electrodes, but fidelity is limited by intracochlear spread of excitation. We aim to better evaluate present-day experimental stimulation procedures and, potentially, to improve transmission of spectra with novel stimulation modalities. As a first step, we are developing non-invasive measures of tonotopic spread of excitation that can be compared between normal-hearing cats and humans. These measures include psychophysics in the present study and scalp-recorded electrophysiology in a companion study (Guérit et al., 2021). Cats and humans detected pure-tone probes presented in continuous 1/8- and 1-oct noise-band maskers. Masker bandwidths were readily discernable in both species by the dependence of masked thresholds on probe frequencies. Thresholds were largely constant across the bandwidth of the 1-oct masker, whereas thresholds dropped markedly at frequencies away from the center of the 1/8-oct masker. Cats and humans differed in that the feline auditory filter centered on 8 kHz, which we measured using a notched-noise procedure, was 22% wider than published values for humans at the same center frequency. Also, thresholds for the cats in the 1-octmasker condition consistently were 1.0 to 3.2 dB higher than expected based on the estimated masker power in the feline auditory filter. The present psychophysical results parallel those in our companion electrophysiological study, thereby providing perceptual validation for that study. These psychophysical and electrophysiological methods will be valuable for future investigations of novel approaches for auditory prosthesis.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined