Chromatin Content Capture Reveals Acute Leukaemia Oncogenic Vulnerability Point in Human B Cell Development

Blood(2021)

引用 0|浏览15
暂无评分
摘要
Human B cell development in adult human bone marrow (BM) is tightly regulated through well-defined stages to produce adaptive immune cells with assembled and functional B cell antigen receptor (BCR)(Martin et al., 2016). To produce mature B cells with functional immunoglobulin receptors, B cell progenitors must undergo multiple stages of highly regulated chromatin remodelling and transcriptional reprogramming which correspond to unique patterns of surface protein expression (Nutt and Kee, 2007). This complex process is frequently dysregulated in B cell neoplasia such as B cell Acute Lymphoblastic Leukemia (B-ALL). B-ALL is highly heterogenous in its phenotypic and clinical presentation, as well as in its underlying molecular features such as DNA methylation patterns and genetic aberrations (Cobaleda and Sánchez‐García, 2009). The lack of general mechanism of leukemogenesis has made it difficult to identify when and where adult and pediatric B-ALL blasts diverge from normal B cell development. Here we show that across 5 B-ALL patients and 3 cell lines with diverse phenotypic and clinical presentations, blasts are epigenetically arrested at a conserved point within healthy human B cell development.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要