Nuclear Opening and Histone Release Are Essential for Nuclear but Not Chromatin Condensation during Terminal Erythropoiesis

Blood(2021)

引用 0|浏览7
暂无评分
摘要
Nuclear condensation and enucleation are characteristic processes in mammalian terminal erythropoiesis. These processes are associated with the transient nuclear opening formation that mediates partial histone release to the cytoplasm. Our previous report showed that caspases are involved in the cleavage of nuclear lamina to enable histone release. However, it remains unclear whether nuclear opening formation and histone release regulate the genomic three-dimensional organization during nuclear condensation. To answer this question, we cultured E13.5 mouse fetal liver Ter119 negative erythroid progenitor cells in erythropoietin (EPO) containing medium for 48 h with or without the presence of caspase inhibitor. As expected, caspase inhibitor blocked nuclear opening formation and histone release, and significantly reduced nuclear condensation and enucleation. We next performed a Hi-C sequencing to investigate chromatin structural change during terminal differentiation and nuclear condensation. To this end, the cultured fetal liver erythroid cells with or without caspase inhibitor were harvested at 30 h right before enucleation for Hi-C sequencing. The sequencing results showed that cells at 30 h contain significantly more interactions than freshly isolated erythroid progenitors, which is consistent with chromatin condensation during terminal erythropoiesis. Further analysis showed that increased interactions mainly accumulate as inter-chromosomal interactions, suggesting inter-chromosome interaction is the dominant structural force driving erythrocyte chromatin condensation. Surprisingly, there were no significant chromatin structural changes between caspase inhibitor treated and mock-treated cells when compared at 30 h. We also performed ATAC-seq and RNA-seq with the same experiment settings, both corresponded to Hi-C sequencing and showed little difference under caspase inhibitor treatment. These results indicate that although histone release and nuclear condensation are compromised with the inhibition of caspases, chromatin stays condensed with well-organized three-dimensional structure and appropriate gene expression regulations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要