Prediction of Obsessive-Compulsive Disorder: Importance of Neurobiology-Aided Feature Design and Cross-Diagnosis Transfer Learning.

Biological psychiatry. Cognitive neuroscience and neuroimaging(2021)

引用 7|浏览16
暂无评分
摘要
BACKGROUND:Machine learning applications using neuroimaging provide a multidimensional, data-driven approach that captures the level of complexity necessary for objectively aiding diagnosis and prognosis in psychiatry. However, models learned from small training samples often have limited generalizability, which continues to be a problem with automated diagnosis of mental illnesses such as obsessive-compulsive disorder (OCD). Earlier studies have shown that features incorporating prior neurobiological knowledge of brain function and combining brain parcellations from various sources can potentially improve the overall prediction. However, it is unknown whether such knowledge-driven methods can provide a performance that is comparable to state-of-the-art approaches based on neural networks. METHODS:In this study, we apply a transparent and explainable multiparcellation ensemble learning framework EMPaSchiz (Ensemble algorithm with Multiple Parcellations for Schizophrenia prediction) to the task of predicting OCD, based on a resting-state functional magnetic resonance imaging dataset of 350 subjects. Furthermore, we apply transfer learning using the features found effective for schizophrenia to OCD to leverage the commonality in brain alterations across these psychiatric diagnoses. RESULTS:We show that our knowledge-based approach leads to a prediction performance of 80.3% accuracy for OCD diagnosis that is better than domain-agnostic and automated feature design using neural networks. Furthermore, we show that a selection of reduced feature sets can be transferred from schizophrenia to the OCD prediction model without significant loss in prediction performance. CONCLUSIONS:This study presents a machine learning framework for OCD prediction with neurobiology-aided feature design using resting-state functional magnetic resonance imaging that is generalizable and reasonably interpretable.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要