Development of 3D printed drug-eluting contact lenses

JOURNAL OF PHARMACY AND PHARMACOLOGY(2022)

Cited 10|Views14
No score
Abstract
Objectives The aim of the work was to introduce 3D printing technology for the design and fabrication of drug-eluting contact lenses (DECL) for the treatment of glaucoma. The development of 3D printed lenses can effectively overcome drawbacks of existing approaches by using biocompatible medical grade polymers that provide sustained drug release of timolol maleate for extended periods. Methods Hot melt extrusion was coupled with fusion deposition modelling (FDM) to produce printable filaments of ethylene-vinyl acetate copolymer-polylactic acid blends at various ratios loaded with timolol maleate. Physicochemical and mechanical characterisation of the printed filaments was used to optimise the printing of the contact lenses Key findings 3D printed lenses with an aperture (opening) and specified dimensions could be printed using FDM technology. The lenses presented a smooth surface with good printing resolution while providing sustained release of timolol maleate over 3 days. The findings of this study can be used for the development of personalised DECL in the future.
More
Translated text
Key words
3D printing, fusion deposition modelling, hot melt extrusion, contact lenses, medical biodegradable, glaucoma
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined