Chrome Extension
WeChat Mini Program
Use on ChatGLM

Insights from a comprehensive study of Trypanosoma cruzi: A new mitochondrial clade restricted to North and Central America and genetic structure of TcI in the region

PLOS NEGLECTED TROPICAL DISEASES(2021)

Cited 4|Views13
No score
Abstract
Author summaryNeglected Tropical Diseases (NTDs) represents socioeconomic burden in most countries of Latin America. Chagas disease, a NTD, is caused by the parasite Trypanosoma cruzi. The disease can be mild, causing swelling and fever, or it can be long-lasting. Left untreated, it often causes heart failure. This study focused on T. cruzi lineages, emphasizing the gap of information from Central America and complementing what is known in North America. Our diverse collection of kissing bugs from North America (United States and Mexico) and Central America identified two of the major mitochondrial lineages circulating in these regions, both representing distinct clades within the already established three clusters of the T. cruzi parasite (mtTcI-mtTcIII): mtTcI(NA-CA) and mtTcIII(NA-CA). At a local scale, population genetic structure of T. cruzi revealed that genetic diversity has a notable geographic component. The important insights into the genetic and evolutionary diversity of T. cruzi in North and Central America provide not only the necessity for referencing genomes to identify lineages but the basis to develop more precise and comprehensive diagnostic assays to better detect T. cruzi infections. More than 100 years since the first description of Chagas Disease and with over 29,000 new cases annually due to vector transmission (in 2010), American Trypanosomiasis remains a Neglected Tropical Disease (NTD). This study presents the most comprehensive Trypanosoma cruzi sampling in terms of geographic locations and triatomine species analyzed to date and includes both nuclear and mitochondrial genomes. This addresses the gap of information from North and Central America. We incorporate new and previously published DNA sequence data from two mitochondrial genes, Cytochrome oxidase II (COII) and NADH dehydrogenase subunit 1 (ND1). These T. cruzi samples were collected over a broad geographic range including 111 parasite DNA samples extracted from triatomines newly collected across NA and CA, all of which were infected with T. cruzi in their natural environment. In addition, we present parasite reduced representation (Restriction site Associated DNA markers, RAD-tag) genomic nuclear data combined with the mitochondrial gene sequences for a subset of the triatomines (27 specimens) collected from Guatemala and El Salvador. Our mitochondrial phylogenetic reconstruction revealed two of the major mitochondrial lineages circulating across North and Central America, as well as the first ever mitochondrial data for TcBat from a triatomine collected in Central America. Our data also show that within mtTcIII, North and Central America represent an independent, distinct clade from South America, named here as mtTcIII(NA-CA), geographically restricted to North and Central America. Lastly, the most frequent lineage detected across North and Central America, mtTcI, was also an independent, distinct clade from South America, noted as mtTcI(NA-CA). Furthermore, nuclear genome data based on Single Nucleotide Polymorphism (SNP) showed genetic structure of lineage TcI from specimens collected in Guatemala and El Salvador supporting the hypothesis that genetic diversity at a local scale has a geographical component. Our multiscale analysis contributes to the understanding of the independent and distinct evolution of T. cruzi lineages in North and Central America regions.
More
Translated text
Key words
trypanosoma cruzi,new mitochondrial clade,genetic structure
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined