A reference induced pluripotent stem cell line for large-scale collaborative studies

Cell Stem Cell(2022)

引用 80|浏览34
暂无评分
摘要
Human induced pluripotent stem cell (iPSC) lines are a powerful tool for studying development and disease, but the considerable phenotypic variation between lines makes it challenging to replicate key findings and integrate data across research groups. To address this issue, we sub-cloned candidate iPSC lines and deeply characterised their genetic properties using whole genome sequencing, their genomic stability upon CRISPR/Cas9-based gene editing, and their phenotypic properties including differentiation to commonly-used cell types. These studies identified KOLF2.1J as an all-around well-performing iPSC line. We then shared KOLF2.1J with groups around the world who tested its performance in head-to-head comparisons with their own preferred iPSC lines across a diverse range of differentiation protocols and functional assays. On the strength of these findings, we have made KOLF2.1J and hundreds of its gene-edited derivative clones readily accessible to promote the standardization required for large-scale collaborative science in the stem cell field. Summary The authors of this collaborative study deeply characterized human induced pluripotent stem cell (iPSC) lines to rationally select a clonally-derived cell line that performs well across multiple modalities. KOLF2.1J was identified as a candidate reference cell line based on single-cell analysis of its gene expression in the pluripotent state, whole genome sequencing, genomic stability after highly efficient CRISPR-mediated gene editing, integrity of the p53 pathway, and the efficiency with which it differentiated into multiple target cell populations. Since it is deeply characterized and can be readily acquired, KOLF2.1J is an attractive reference cell line for groups working with iPSCs. ![Figure][1] ### Competing Interest Statement S.W.S. is on the scientific advisory council of the Lewy Body Dementia Association and the MSA Coalition. S.W.S. is an editorial board member for the 'Journal of Parkinson's Disease' and 'JAMA Neurology'. S.W.S. received research support from Cerevel Therapeutics. M.K. serves on the scientific advisory boards of Engine Biosciences, Casma Therapeutics, Cajal Neuroscience and Alector and is a consultant to Modulo Bio and Recursion Therapeutics. Participation by researchers from Data Tecnica International LLC in this project was part of a competitive contract awarded to Data Tecnica International LLC by the National Institutes of Health to support open science research. M.A.N. also currently serves on the scientific advisory board for Clover Therapeutics and is an advisor to Neuron23 Inc. [1]: pending:yes
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要