Conformational Order of Alkyl Side Chain of Poly(3-alkylthiophene) Promotes Hole-Extraction Ability in Perovskite/Poly(3-alkylthiophene) Heterojunction

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2021)

引用 6|浏览4
暂无评分
摘要
Molecular structures of hole transport materials (HTMs) have significant impact on the optoelectronic properties of perovskite/HTM heterojunction. But the structure-property relationship in the heterojunction remains poorly understood. By using poly(3-alkylthiophene) (P3AT) as the HTM model, here we apply sum frequency generation vibrational spectroscopy to establish correlations among conformations of P3ATs, the hole extraction ability of P3ATs from the perovskite layer, and the charge mobility of P3ATs. It is revealed that with similar energy-level alignment, the conformational order of alkyl side chains in regioregular P3ATs can effectively regulate the hole extraction ability of P3ATs from perovskite layer by tuning reorganization energy. By contrast, the charge mobility of P3ATs strongly depends on the P3AT backbone's coplanarity. Our findings decouple the roles of the long-hidden conformational order of alkyl side chain and the polythiophene backbone's coplanarity on the performance of perovskite/HTM heterojunction, offering useful guidelines for boosting the performance of optoelectronic devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要