Understanding the source of METTL3-independent m6A in mRNA

biorxiv(2021)

引用 4|浏览2
暂无评分
摘要
N 6-methyladenosine (m6A) is a highly prevalent mRNA modification which promotes degradation of transcripts encoding proteins that have roles in cell development, differentiation, and other pathways. METTL3 is the major methyltransferase that catalyzes the formation of m6A in mRNA. As 30—80% of m6A can remain in mRNA after METTL3 depletion by CRISPR/Cas9-based methods, other enzymes are thought to catalyze a sizable fraction of m6A. Here, we re-examined the source of m6A in the mRNA transcriptome. We characterized mouse embryonic stem cell lines which continue to have m6A in their mRNA after Mettl3 knockout. We show that these cells express alternatively spliced Mettl3 transcript isoforms that bypass the CRISPR/Cas9 mutations and produce functionally active methyltransferases. We similarly show that other reported METTL3 knockout cell lines express altered METTL3 proteins. We find that gene dependency datasets show that most cell lines fail to proliferate after METTL3 deletion, suggesting that reported METTL3 knockout cell lines express altered METTL3 proteins rather than have full knockout. Finally, we reassessed METTL3's role in synthesizing m6A using a genomic deletion of Mettl3 , and found that METTL3 is responsible for >95% of m6A in mRNA. Overall, these studies suggest that METTL3 is responsible for the vast majority of m6A in the transcriptome, and that remaining m6A in putative METTL3 knockout cell lines is due to the expression of altered but functional METTL3 isoforms. ### Competing Interest Statement S.R.J. is scientific founder of, is advisor to, and owns equity in Gotham Therapeutics and 858 Therapeutics.
更多
查看译文
关键词
mrna
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要