Genome-Scale DNA Methylation Analysis Identifies Repeat Element Alterations that Modulate the Genomic Stability of Melanocytic Nevi.

The Journal of investigative dermatology(2021)

引用 8|浏览5
暂无评分
摘要
Acquired melanocytic nevi grow and persist in a stable form into adulthood. Using genome-wide methylation profiling, we evaluated 32 histopathologically and dermoscopically characterized nevi to identify the key epigenetic regulatory mechanisms involved in nevogenesis. Benign (69% globular and 31% nonspecific dermoscopic pattern) and dysplastic (95% reticular/nonspecific dermoscopic pattern) nevi were dissimilar, with only two shared differentially methylated loci. Benign nevi showed an increase in both genome-scale methylation and methylation of Alu/LINE-1 retrotransposable elements, a marker of genomic stability, as well as global methylation. In contrast, dysplastic nevi showed evidence for genomic instability through the hypomethylation of Alu/LINE-1 (Alu: P = 0.00019; LINE-1: P = 0.000035). Using dermoscopic classifications, reticular/nonspecific patterned nevi had 59,572 5'-C-phosphate-G-3' differentially methylated loci (Q < 0.05), whereas globular nevi had no significant differentially methylated loci. In reticular/nonspecific patterned nevi, the tumor suppressor PTEN had the greatest proportion of hypermethylated 5'-C-phosphate-G-3' loci in its promoter region than all other assayed gene promoters. The relative activity of reticular/nonspecific nevi was evidenced by 50,720 hypomethylated loci being enriched for accessible chromatin and 8,852 hypermethylated loci strongly enriched, for example, marks of active gene promoters, which suggests that gain of DNA methylation observed in these nevus types plays a role in gene regulation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要