High Resolution Distribution Dataset of Double-Season Paddy Rice in China

REMOTE SENSING(2021)

Cited 36|Views6
No score
Abstract
Although China is the largest producer of rice, accounting for about 25% of global production, there are no high-resolution maps of paddy rice covering the entire country. Using time-weighted dynamic time warping (TWDTW), this study developed a pixel- and phenology-based method to identify planting areas of double-season paddy rice in China, by comparing temporal variations of synthetic aperture radar (SAR) signals of unknown pixels to those of known double-season paddy rice fields. We conducted a comprehensive evaluation of the method's performance at pixel and regional scales. Based on 145,210 field surveyed samples from 2018 to 2020, the producer's and user's accuracy are 88.49% and 87.02%, respectively. Compared to county-level statistical data from 2016 to 2019, the relative mean absolute errors are 34.11%. This study produced distribution maps of double-season rice at 10 m spatial resolution from 2016 to 2020 over nine provinces in South China, which account for more than 99% of the planting areas of double-season paddy rice of China. The maps are expected to contribute to timely monitoring and evaluating rice growth and yield.
More
Translated text
Key words
early rice, late rice, double-season rice, time-weighted dynamic time warping, synthetic aperture radar, planting area, remote sensing
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined