Revealing the enhancing mechanisms of Fe-Cu bimetallic catalysts for the Fenton-like degradation of phenol.

Chemosphere(2021)

引用 20|浏览18
暂无评分
摘要
To develop a heterogeneous Fenton-like catalyst with desirable activity and reusability remains a great challenge for the practical degradation of environmental remediation. Herein, we demonstrate a dendritic Fe-Cu bimetallic catalyst consisted of a Cu/Fe3O4 shell and a FeCu core (E100). In comparisons of single Cu, Fe and Fe3O4, E100 performs far better performance for the Fenton-like degradation of phenol, and its dominant Fenton-like active centers are Fe species under acidic pH or Cu species under neutral pH. Particularly, Cu-based Fenton-like reactions are greatly accelerated by galvanic micro-cells effects that come from the special co-existence of Cu/Fe3O4 shell, and subsequently, owing to the Cu leaching from the shell, the inner FeCu core of E100 is able to be exposed and further strengthen Fe-based Fenton-like reactions. Overall, the appropriate synergistic effects endow E100 with superior catalytic activity and reusability than other catalysts. Our work pushes forward a step for understanding the catalytic mechanism of Fe-Cu bimetallic catalysts and provides new sights for fabricating efficient Fenton-like catalysts for environmental remediation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要