Integrated computational and in vivo models reveal Key Insights into Macrophage Behavior during bone healing

Etienne Baratchart,Chen Hao Lo, Conor C. Lynch,David Basanta

biorxiv(2021)

引用 4|浏览8
暂无评分
摘要
Myeloid-derived monocyte and macrophages are key cells in the bone that contribute to remodeling and injury repair. However, their temporal polarization status and control of boneresorbing osteoclasts and bone-forming osteoblasts responses is largely unknown. In this study, we focused on two aspects of monocyte/macrophage dynamics and polarization states over time: 1) the injury-triggered pro- and anti-inflammatory monocytes/macrophages temporal profiles, 2) the contributions of pro-versus anti-inflammatory monocytes/macrophages in coordinating healing response. Bone healing is a complex multicellular dynamic process. While traditional in vitro and in vivo experimentation may capture the behavior of select populations with high resolution, they cannot simultaneously track the behavior of multiple populations. To address this, we have used an integrated a coupled ordinary differential equations (ODEs)-based framework describing multiple cellular species to in vivo bone injury data in order to identify and test various hypotheses regarding bone cell populations dynamics. Our approach allowed us to infer several biological insights including, but not limited to,: 1) anti-inflammatory macrophages are key for early osteoclast inhibition and pro-inflammatory macrophage suppression, 2) pro-inflammatory macrophages are involved in osteoclast bone resorptive activity, whereas osteoblasts promote osteoclast differentiation, 3) Pro-inflammatory monocytes/macrophages rise during two expansion waves, which can be explained by the anti-inflammatory macrophages-mediated inhibition phase between the two waves. In addition, we further tested the robustness of the mathematical model by comparing simulation results to an independent experimental dataset. Taken together, this novel comprehensive mathematical framework allowed us to identify biological mechanisms that best recapitulate bone injury data and that explain the coupled cellular population dynamics involved in the process. Furthermore, our hypothesis testing methodology could be used in other contexts to decipher mechanisms in complex multicellular processes. Author Summary Myeloid-derived monocytes/macrophages are key cells for bone remodeling and injury repair. However, their temporal polarization status and control of bone-resorbing osteoclasts and boneforming osteoblasts responses is largely unknown. In this study, we focused on two aspects of monocyte/macrophage population dynamics: 1) the injury-triggered pro- and anti-inflammatory monocytes/macrophages temporal profiles, 2) the contributions of pro-versus anti-inflammatory monocytes/macrophages in coordinating healing response. In order to test various hypotheses regarding bone cell populations dynamics, we have integrated a coupled ordinary differential equations-based framework describing multiple cellular species to in vivo bone injury data. Our approach allowed us to infer several biological insights including: 1) anti-inflammatory macrophages are key for early osteoclast inhibition and pro-inflammatory macrophage suppression, 2) pro-inflammatory macrophages are involved in osteoclast bone resorptive activity, whereas osteoblasts promote osteoclast differentiation, 3) Pro-inflammatory monocytes/macrophages rise during two expansion waves, which can be explained by the anti-inflammatory macrophages-mediated inhibition phase between the two waves. Taken together, this mathematical framework allowed us to identify biological mechanisms that recapitulate bone injury data and that explain the coupled cellular population dynamics involved in the process. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
macrophage behavior,bone healing,integrated computational
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要