The effect of hyperoxia on the hemostasiological status of severely burned patients.

Klinicheskaia laboratornaia diagnostika(2021)

引用 1|浏览1
暂无评分
摘要
The state of the hemostasis system was studied in 9 patients of the middle age group (44 ± 9.94 years) who received thermal trauma on an area of more than 32% (49.4 ± 18.3) of the body surface, accompanied by the development of burn shock. The standard therapy for burn injury was supplemented with HBO sessions. Treatment with hyperbaric oxygen was carried out in pressure chambers BLKS-307, BLKS-307/1. The state of the coagulation, anticoagulant and fibrinolytic links of the hemostasis system, as well as the viscoelastic properties of the blood, were assessed immediately before the HBO session and immediately after it. The total number of comparison pairs was 45. Under the influence of HBO therapy, there was an increase in the activity of antithrombin III (ATIII), protein C (PrS) and a decrease in the viscoelastic properties of blood (p <0.05). Positive deviations in the values of ATIII, Pr C, von Willebrand factor, APTT, prothrombin and thrombin time, fibrinogen, factor XIII, XIIa-dependent fibrinolysis, D-dimers and thromboelastography parameters were revealed. The maximum frequency of their occurrence was recorded for ATIII (95%), the minimum - for the D-dimer (62%). After HBO procedures, undesirable deviations of the hemostatic system parameters were also noted. They were chaotic, were compensated by an increase in the activity of physiological anticoagulants and were not accompanied by complications of a thrombogenic nature. Thus, conducting HBO therapy sessions in the acute period of burn disease increases the activity of physiological anticoagulants and stabilizes the viscoelastic properties of blood. There is a high frequency of occurrence of positive effects of hyperoxia on the components of the hemostasis system. The identification of its undesirable effects indicates the need to monitor the state of the hemostasis system during HBO procedures.
更多
查看译文
关键词
TEG,burns,endothelial dysfunction,hemostasis system,hyperbaric oxygen
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要