Early neural activity changes associated with visual conscious perception

biorxiv(2021)

引用 0|浏览3
暂无评分
摘要
The neural mechanisms of visual conscious perception have been investigated for decades. However, the spatiotemporal dynamics associated with the earliest neural responses following consciously perceived stimuli are still poorly understood. Using a dataset of intracranial EEG recordings, the current study aims to investigate the neural activity changes associated with the earliest stages of visual conscious perception. Subjects (N=10, 1,693 grey matter electrode contacts) completed a continuous performance task in which individual letters were presented in series and subjects were asked to press a button when they saw a target letter. Broadband gamma power (40-115Hz) dynamics were analyzed in comparison to baseline prior to stimulus and contrasted for target trials with button presses and non-target trials without button presses. Regardless of event type, we observed early gamma power changes within 30-150 ms from stimulus onset in a network including increases in bilateral occipital, fusiform, frontal (including frontal eye fields), and medial temporal cortex, increases in left lateral parietal-temporal cortex, and decreases in the right anterior medial occipital cortex. No significant differences were observed between target and non-target stimuli until >150 ms post-stimulus, when we saw greater gamma power increases in left motor and premotor areas, suggesting a possible role of these later signals in perceptual decision making and/or motor responses with the right hand. The early gamma power findings suggest a broadly distributed cortical visual detection network that is engaged at early times tens of milliseconds after signal transduction from the retina. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
early neural activity changes,perception
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要