Morphological determinants of cell-to-cell variations in action potential dynamics in substantia nigra dopaminergic neurons

The Journal of Neuroscience(2021)

引用 0|浏览1
暂无评分
摘要
Action potential (AP) shape is a critical electrophysiological parameter, in particular because it strongly modulates neurotransmitter release. AP shape is also used to distinguish neuronal populations, as it greatly varies between neuronal types. For instance, AP duration ranges from hundreds of microseconds in cerebellar granule cells to 2-3 milliseconds in substantia nigra pars compacta (SNc) dopaminergic (DA) neurons. While most of this variation seems to arise from differences in the subtypes of voltage- and calcium-gated ion channels expressed, a few studies suggested that dendritic morphology may also affect AP shape. However, AP duration also displays significant variability in a same neuronal type, while the determinants of these variations are poorly known. Using electrophysiological recordings, morphological reconstructions and realistic Hodgkin-Huxley modeling, we investigated the relationships between dendritic morphology and AP shape in SNc DA neurons. In this neuronal type where the axon arises from an axon-bearing dendrite (ABD), the duration of the somatic AP could be predicted from a linear combination of the complexities of the ABD and the non-ABDs. Dendrotomy simulation and experiments showed that these correlations arise from the causal influence of dendritic topology on AP duration, due in particular to a high density of sodium channels in the somato-dendritic compartment. In addition, dendritic morphology also modulated AP back-propagation efficiency in response to barrages of EPSCs in the ABD. In line with previous findings, these results demonstrate that dendritic morphology plays a major role in defining the electrophysiological properties of SNc DA neurons and their cell-to-cell variations. SIGNIFICANCE STATEMENT Action potential (AP) shape is a critical electrophysiological parameter, in particular because it strongly modulates neurotransmitter release. AP shape (e.g. duration) greatly varies between neuronal types but also within a same neuronal type. While differences in ion channel expression seem to explain most of AP shape variation across cell types, the determinants of cell-to-cell variations in a same neuronal type are mostly unknown. We used electrophysiological recordings, neuronal reconstruction and modeling to show that, due to the presence of sodium channels in the somato-dendritic compartment, a large part of cell-to-cell variations in somatic AP duration in substantia nigra pars compacta dopaminergic neurons is explained by variations in dendritic topology. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要