Predicting Core Electron Binding Energies in Elements of the First Transition Series Using the $\Delta$-Self-Consistent-Field Method

FARADAY DISCUSSIONS(2021)

引用 0|浏览2
暂无评分
摘要
The $\Delta$-Self-Consistent-Field ($\Delta$SCF) method has been established as an accurate and computationally efficient approach for calculating absolute core electron binding energies for light elements up to chlorine, but relatively little is known about the performance of this method for heavier elements. In this work, we present $\Delta$SCF calculations of transition metal (TM) 2$p$ core electron binding energies for a series of 60 molecular compounds containing the first row transition metals Ti, V, Cr, Mn, Fe and Co. We find that the calculated TM 2$p_{3/2}$ binding energies are less accurate than the results for the lighter elements with a mean absolute error (MAE) of 0.73 eV compared to experimental gas phase photoelectron spectroscopy results. However, our results suggest that the error depends mostly on the element and is rather insensitive to the chemical environment. By applying an element-specific correction to the binding energies the MAE is reduced to 0.20 eV, similar to the accuracy obtained for the lighter elements.
更多
查看译文
关键词
core electron binding energies,transition series,self-consistent-field
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要