Antiferromagnetic spin Seebeck effect across the spin-flop transition: A stochastic Ginzburg-Landau simulation

PHYSICAL REVIEW B(2022)

引用 6|浏览4
暂无评分
摘要
We investigate the antiferromagnetic spin Seebeck effect across the spin-flop transition in a numerical simulation based on the time-dependent Ginzburg-Landau equation for a bilayer of a uniaxial insulating antiferromagnet and an adjacent metal. By directly simulating the rate of change of the conduction-electron spin density s in the adjacent metal layer, we demonstrate that a sign reversal of the antiferromagnetic spin Seebeck effect across the spin-flop transition occurs when the interfacial coupling of s to the staggered magnetization n of the antiferromagnet dominates, whereas no sign reversal appears when the interfacial coupling of s to the magnetization m dominates. Moreover, we show that the sign reversal is influenced by the degree of spin dephasing in the metal layer. Our result indicates that the sign reversal is not a generic property of a simple uniaxial antiferromagnet, but controlled by microscopic details of the exchange coupling at the interface and the spin dephasing in the metal layer.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要