Type-I interferon signaling is essential for robust metronomic chemo-immunogenic tumor regression in murine triple-negative breast cancer

biorxiv(2021)

引用 3|浏览2
暂无评分
摘要
Triple-negative breast cancer (TNBC) is characterized by poor prognosis and aggressive growth, with limited therapeutic options for many patients. Here, we use two syngeneic mouse TNBC models, 4T1 and E0771, to investigate the chemo-immunogenic potential of cyclophosphamide and the mechanistic contributions of cyclophosphamide-activated type-I interferon (IFN) signaling to therapeutic activity. Chemically-activated cyclophosphamide induced robust IFN-alpha/beta receptor-1-dependent signaling linked to hundreds of IFN-stimulated gene responses in both TNBC lines. Further, in 4T1 tumors, cyclophosphamide given on a medium-dose, 6-day intermittent metronomic schedule induced strong IFN signaling but comparatively weak immune cell infiltration associated with long-term tumor growth stasis. Induction of IFN signaling was somewhat weaker in E0771 tumors but was followed by extensive downstream gene responses, robust immune cell infiltration and prolonged tumor regression. The immune dependence of these effective anti-tumor responses was established by CD8 T-cell immunodepletion, which blocked cyclophosphamide-induced E0771 tumor regression and led to tumor stasis followed by regrowth. Strikingly, IFN-alpha/beta receptor-1 antibody blockade was even more effective in preventing E0771 immune cell infiltration and blocked the major tumor regression induced by cyclophosphamide treatment. Type-I IFN signaling is thus essential for the robust chemo-immunogenic response of these TNBC tumors to cyclophosphamide administered on a metronomic schedule ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
interferon,breast cancer,chemo-immunogenic,triple-negative
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要