Chrome Extension
WeChat Mini Program
Use on ChatGLM

Foundations of Time Series Analysis.

Acta neurochirurgica. Supplement(2022)

Cited 1|Views6
No score
Abstract
For almost a century, classical statistical methods including exponential smoothing and autoregression integrated moving averages (ARIMA) have been predominant in the analysis of time series (TS) and in the pursuit of forecasting future events from historical data. TS are chronological sequences of observations, and TS data are therefore prevalent in many aspects of clinical medicine and academic neuroscience. With the rise of highly complex and nonlinear datasets, machine learning (ML) methods have become increasingly popular for prediction or pattern detection and within neurosciences, including neurosurgery. ML methods regularly outperform classical methods and have been successfully applied to, inter alia, predict physiological responses in intracranial pressure monitoring or to identify seizures in EEGs. Implementing nonparametric methods for TS analysis in clinical practice can benefit clinical decision making and sharpen our diagnostic armory.
More
Translated text
Key words
Deep learning,EEG,Intracranial pressure,Machine learning,Time series
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined