Quaternary Ammonium-Mediated Delamination of Europium-Based Metal-Organic Framework into Ultrathin Nanosheets for the Selective Photoelectrochemical Sensing of Fe3+

INORGANIC CHEMISTRY(2021)

引用 11|浏览1
暂无评分
摘要
Structural delamination of bulk layered metal-organic frameworks (MOFs) remains a great challenge, largely owing to a lack of general synthetic strategies. Here, we reported a simple solvent-free intercalation strategy for the delamination of rare-earth-based MOF (RE-MOF) with a topology structure of MIL-78 by tuning the chain length of quaternary ammonium salts. Four types of quaternary ammonium salts, involving tetraethylammonium bromide (TEAB), tetrapropylammonium bromide (TPAB), tetrabutylammonium bromide (TBAB), and hexadecyl trimethyl ammonium bromide (CTAB) were introduced to investigate their intercalation capabilities. It is evident in our case that the interruption/intercalation behavior of quaternary ammonium salts differs with their steric structures, and the chain-like CTAB can induce obvious delamination of MIL-78 crystals. Particularly, the CTAB-intercalated ultrathin Eu-based MIL-78 nanosheets exhibited unique selective photoelectrochemical sensing property toward trace amounts of Fe3+ ions in aqueous solution with a detection limit of 0.0899 mu M at a signal-to-noise ratio of 3. These results demonstrated a green bottom-up strategy to obtain high-quality RE-MOF nanosheets for potential photocurrent response applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要