谷歌浏览器插件
订阅小程序
在清言上使用

A public antibody class recognizes an S2 epitope exposed on open conformations of SARS-CoV-2 spike

NATURE COMMUNICATIONS(2022)

引用 19|浏览69
暂无评分
摘要
Delineating the origins and properties of antibodies elicited by SARS-CoV-2 infection and vaccination is critical for understanding their benefits and potential shortcomings. Therefore, we investigate the SARS-CoV-2 spike (S)-reactive B cell repertoire in unexposed individuals by flow cytometry and single-cell sequencing. We show that similar to 82% of SARS-CoV-2 S-reactive B cells harbor a naive phenotype, which represents an unusually high fraction of total human naive B cells (similar to 0.1%). Approximately 10% of these naive S-reactive B cells share an IGHV1-69/IGKV3-11 B cell receptor pairing, an enrichment of 18-fold compared to the complete naive repertoire. Following SARS-CoV-2 infection, we report an average 37-fold enrichment of IGHV1-69/IGKV3-11 B cell receptor pairing in the S-reactive memory B cells compared to the unselected memory repertoire. This class of B cells targets a previously undefined non-neutralizing epitope on the S2 subunit that becomes exposed on S proteins used in approved vaccines when they transition away from the native pre-fusion state because of instability. These findings can help guide the improvement of SARS-CoV-2 vaccines. To fully understand the potential shortcomings of SARS-CoV-2 vaccination, it is necessary to delineate the properties of the antibodies elicited, during immunization, and also infection. Through investigation of the SARS-CoV-2 spike-reactive B cell repertoire, authors identify following infection, a subset of B cells enriched and almost exclusively target a non-neutralizing S2 epitope present in aberrant forms.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要