谷歌浏览器插件
订阅小程序
在清言上使用

Internal decoherence in nano-object interferometry due to phonons

AVS QUANTUM SCIENCE(2022)

引用 8|浏览1
暂无评分
摘要
We discuss the coherent splitting and recombining of a nanoparticle in a mesoscopic "closed-loop" Stern-Gerlach interferometer in which the observable is the spin of a single impurity embedded in the particle. This spin, when interacting with a pulsed magnetic gradient, generates the force on the particle. We calculate the internal decoherence, which arises as the displaced impurity excites internal degrees of freedom (phonons) that may provide WelcherWeg information and preclude interference. We estimate the constraints this decoherence channel puts on future interference experiments with massive objects. We find that for a wide range of masses, forces, and temperatures, phonons do not inhibit Stern-Gerlach interferometry with micro-scale objects. However, phonons do constitute a fundamental limit on the splitting of larger macroscopic objects if the applied force induces phonons.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要