Exosomes for gene therapy effectively inhibit the endothelial-mesenchymal transition in mouse aortic endothelial cells

BMC MUSCULOSKELETAL DISORDERS(2021)

引用 2|浏览5
暂无评分
摘要
Background Heterotopic ossification (HO) can limit joint activity, causes ankylosis and impairs the function and rehabilitation of patients. Endothelial to mesenchymal transition (EndMT) plays an important role in the pathogenesis of HO, and high expression of SMAD7(Mothers Against Decapentaplegic Homolog 7) in endothelial cells can effectively reverse the TGF-β1 mediated EndMT. This article studied an appropriately engineered exosome with high biocompatibility and good targeting property to administrate SMAD7 gene therapy to inhibit the EndMT. Methods Exosomes from mouse aortic endothelial cells were cultured and harvested. DSPE-PEG and antibody CD34 were combined to exosomes to synthesize the endothelial cell targeting exosome vector (Exosome-DSPE-PEG-AbCD34). The biocompatibility, stability, targeting and cell internalization of exosome vector were tested, then the Exosome-DSPE-PEG-AbCD34 was loaded with Smad7 plasmid and administrated to MAECs to examine its therapeutic effect on EndMT of MAEC mediated by TGF-β1. Results The Exosome-DSPE-PEG-AbCD34 has no impact on MAEC cell viability at high concentration, and exosome-DSPE-PEG-Ab CD34 could be stably stored at 4°C and 37°C for at least 8 days. Exosome-DSPE-PEG-Ab CD34 has better targeting property to MAEC cells and can enter into the cells more effectively. The Exosome-DSPE-PEG-Ab CD34 -Smad7 could significantly increase the level of SMAD7, decrease the expression of TGF-β1, and effectively reverse the EndMT of MAEC mediated by TGF- β1 in MAEC cells. Conclusions The synthesized Exosome-DSPE-PEG-AbCD34 -Smad7 has good biological properties and can effectively reverse the EndMT of MAEC mediated by TGF-β1. Thus, Exosome-DSPE-PEG-AbCD34 -Smad7 may has the potential for the prevention and treatment of HO.
更多
查看译文
关键词
Gene therapy,SMAD7,exosome,endothelial-mesenchymal transition,mouse aortic endothelial cells,endothelial cell targeting property
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要