Correction to: Cubically cage-shaped mesoporous ordered silica for simultaneous visual detection and removal of uranium ions from contaminated seawater

Microchimica Acta(2022)

Cited 8|Views10
No score
Abstract
A dual-function organic-inorganic mesoporous structure is reported for naked-eye detection and removal of uranyl ions from an aqueous environment. The mesoporous sensor/adsorbent is fabricated via direct template synthesis of highly ordered silica monolith (HOM) starting from a quaternary microemulsion liquid crystalline phase. The produced HOM is subjected to further modifications through growing an organic probe, omega chrome black blue G (OCBBG), in the cavities and on the outer surface of the silica structure. The spectral response for [HOM-OCBBG → U(VI)] complex shows a maximum reflectance at λ max = 548 nm within 1 min response time ( t R ); the LOD is close to 9.1 μg/L while the LOQ approaches 30.4 μg/L, and this corresponds to the range of concentration where the signal is linear against U(VI) concentration (i.e., 5-1000 μg/L) at pH 3.4 with standard deviation (SD) of 0.079 (RSD% = 11.7 at n = 10). Experiments and DFT calculations indicate the existence of strong binding energy between the organic probe and uranyl ions forming a complex with blue color that can be detected by naked eyes even at low uranium concentrations. With regard to the radioactive remediation, the new mesoporous sensor/captor is able to reach a maximum capacity of 95 mg/g within a few minutes of the sorption process. The synthesized material can be regenerated using simple leaching and re-used several times without a significant decrease in capacity. Graphical abstract
More
Translated text
Key words
High-ordered silica, Radioactive pollution, Nuclear waste, Mesoporous materials, Chromogenic probes, Uranium adsorption
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined