Dimensional Crossover in the Superfluid-Supersolid Quantum Phase Transition

PHYSICAL REVIEW X(2022)

引用 18|浏览8
暂无评分
摘要
Supersolids are a fundamental quantum phase of matter where the global phase and translational symmetries are spontaneously broken. The recently discovered supersolidity in quantum gases of strongly magnetic atoms gives the opportunity to explore in depth how superfluidity and crystalline order are mixed in this fascinating phase. The dipolar supersolid is usually created from a Bose-Einstein condensate, i.e., a standard superfluid, crossing a quantum phase transition that is related to the crystallization transitions of ordinary matter. In this work, we assess experimentally and theoretically the character of the superfluid-supersolid quantum phase transition. We find that one-row supersolids can have already two types of phase transitions, discontinuous and continuous, that are reminiscent of the first- and second-order transitions predicted in the thermodynamic limit in 2D and 1D, respectively. The dimensional crossover is peculiar to supersolids, is controlled via the transverse confinement and the atom number, and can be justified on the general ground of the Landau theory of phase transitions. The quasiadiabatic crossing of a continuous phase transition opens new directions of investigation for supersolids.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要