谷歌浏览器插件
订阅小程序
在清言上使用

Ultraviolet Spectropolarimetry with Polstar: Conservative and Nonconservative Mass Transfer in OB Interacting Binaries

Astrophysics and Space Science(2021)

引用 5|浏览23
暂无评分
摘要
One objective of the Polstar spectropolarimetry mission is to characterize the degree of nonconservative mass transfer that occurs at various stages of binary evolution, from the initial mass reversal to the late Algol phase. The proposed instrument combines spectroscopic and polarimetric capabilities, where the spectroscopy can resolve Doppler shifts in UV resonance lines with 10 km/s precision, and polarimetry can resolve linear polarization with 1e-3 precision or better. The spectroscopy will identify absorption by mass streams seen in projection against the stellar disk as a function of orbital phase, hot accretion spots, as well as scattering from extended splash structures, circumbinary disks, and other flows in and above/below the orbital plane (e.g. jets) that fail to be transferred conservatively. The polarimetry affects more the light coming from material not seen against the stellar disk, allowing the geometry of the scattering to be tracked, resolving ambiguities left by the spectroscopy and light-curve information. For example, nonconservative mass streams ejected in the polar direction will produce polarization of the opposite sign from conservative transfer accreting in the orbital plane. Also, time domain coverage over a range of phases of the binary orbit are well supported by the Polstar observing strategy. Combining these elements will significantly improve our understanding of the mass transfer process and the amount of mass that can escape from the system, an important channel for changing the final mass, and ultimate supernova, of the large number of massive stars found in binaries at close enough separation to undergo interaction.
更多
查看译文
关键词
Algol variable stars (24),Be stars (142),Close binary stars (254),Circumstellar matter (241),Early-type emission stars (428),Instruments,Multiple star evolution (2153),NASA: MIDEX,O subdwarf stars (1138),Spectropolarimetry (1973),Stellar mass loss (1613),Ultraviolet astronomy (1736)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要