Efficient Organic Solar Cells Enabled by Simple Non-Fused Electron Donors with Low Synthetic Complexity

SMALL(2022)

引用 23|浏览20
暂无评分
摘要
Fused-ring electron donors boost the efficiency of organic solar cells (OSCs), but they suffer from high cost and low yield for their large synthetic complexity (SC > 30%). Herein, the authors develop a series of simple non-fused-ring electron donors, PF1 and PF2, which alternately consist of furan-3-carboxylate and 2,2 '-bithiophene. Note that PF1 and PF2 present very small SC of 9.7% for their inexpensive raw materials, facile synthesis, and high synthetic yield. Compared to their all-thiophene-backbone counterpart PT-E, two new polymers feature larger conjugated plane, resulting in higher hole mobility for them, especially a value up to approximate to 10(-4) cm(2) V-1 center dot s for PF2 with longer alkyl side chain. Meanwhile, PF1 and PF2 exhibit larger dielectric constant and deeper electronic energy level versus PT-E. Benefiting from the better physicochemical properties, the efficiencies of PF1- and PF2-based devices are improved by approximate to 16.7% and approximate to 71.3% relative to that PT-E-based devices, respectively. Furthermore, the optimized PF2-based devices with introducing PC71BM as the third component deliver a higher efficiency of 12.40%. The work not only indicates that furan-3-carboxylate is a simple yet efficient building block for constructing non-fused-ring polymers but also provides a promising electron donor PF2 for the low-cost production of OSCs.
更多
查看译文
关键词
electron donors, furan-3-carboxylate, non-fused-ring polymers, organic solar cells, synthetic complexity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要