Chrome Extension
WeChat Mini Program
Use on ChatGLM

Behavior of CFRP-Confined Sand-Based Material Columns under Axial Compression

POLYMERS(2021)

Cited 1|Views4
No score
Abstract
This paper presents an innovative pumpable standing support designed for underground mines located in the arid and semi-arid deserts of the Gobi region with a shortage of water resources. The exterior shell of this pumpable standing support is made of carbon fiber-reinforced polymer (CFRP), while the infill material is a sand-based material (SBM). As the novel backfill material, SBM is the combination of high-water cementing material and desert sand. A series of experimental tests were conducted to obtain the mechanical response mechanism of this novel pumpable standing support under uniaxial compression. Test variables investigated in this research covered the water-to-powder ratio of the cementing material, the mixing amount of sand, and the thickness of the CFRP tube. Test results confirmed that the CFRP-confined SBM columns exhibited typical strain hardening behavior with the acceptable axial deformation. It was also demonstrated that using high-strength cementing material, a thicker CFRP tube, and a high mixing amount of sand effectively increased the bearing capacity of the CFRP-confined SBM column. Except for the exemplary structural behavior, the consumption of high-water cementing materials of the novel pumpable standing support is smaller than that of its counterparts made of pure cementing material, when specimens with the same mechanical performance are compared.
More
Translated text
Key words
desert sand,high-water material,fiber-reinforced polymer,composite structure,underground mines
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined