Mitochondrial aspartate regulates TNF biogenesis and autoimmune tissue inflammation

NATURE IMMUNOLOGY(2021)

引用 37|浏览9
暂无评分
摘要
Misdirected immunity gives rise to the autoimmune tissue inflammation of rheumatoid arthritis, in which excess production of the cytokine tumor necrosis factor (TNF) is a central pathogenic event. Mechanisms underlying the breakdown of self-tolerance are unclear, but T cells in the arthritic joint have a distinctive metabolic signature of ATPlo acetyl-CoAhi proinflammatory effector cells. Here we show that a deficiency in the production of mitochondrial aspartate is an important abnormality in these autoimmune T cells. Shortage of mitochondrial aspartate disrupted the regeneration of the metabolic cofactor nicotinamide adenine dinucleotide, causing ADP deribosylation of the endoplasmic reticulum (ER) sensor GRP78/BiP. As a result, ribosome-rich ER membranes expanded, promoting co-translational translocation and enhanced biogenesis of transmembrane TNF. ERrich T cells were the predominant TNF producers in the arthritic joint. Transfer of intact mitochondria into T cells, as well as supplementation of exogenous aspartate, rescued the mitochondria-instructed expansion of ER membranes and suppressed TNF release and rheumatoid tissue inflammation. Mitochondrial aspartate regulates ER morphology and co-translational translocation via BiP ADP ribosylation. In T cells from patients with rheumatoid arthritis, mitochondrial aspartate is deficient, resulting in ER expansion and excessive production of the pro-inflammatory cytokine TNF.
更多
查看译文
关键词
Autoimmunity,Immunological disorders,Rheumatoid arthritis,T cells,Biomedicine,general,Immunology,Infectious Diseases
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要