Performance Analysis Of Perovskite Solar Cells Using Dft-Extracted Parameters Of Metal-Doped Tio2 Electron Transport Layer

JOURNAL OF PHYSICAL CHEMISTRY C(2021)

Cited 15|Views4
No score
Abstract
The performance of perovskite solar cells (PSCs) depends heavily on the electronic and optical properties of the electron transport layer (ETL). Density functional theory (DFT) uses a quantum-mechanical approach to accurately predict the properties of different layers in PSCs, including the ETL. Titanium dioxide (TiO2) is a widely used material for the ETL in PSCs. In this work, we use first-principles calculations based on DFT to obtain the electronic and optical properties of pristine rutile TiO2 and TiO2 doped with tin (Sn) and zinc (Zn). DFT-extracted carrier mobility, band gap, and the absorption spectrum of TiO2 are used in the SCAPS-1D device simulator to evaluate the performance of the solar cell device, with respect to dopant concentration and thickness of TiO2. PSCs with 3.125 mol % Sn-doped TiO2 achieve a maximum power conversion efficiency (PCE) of 17.14 versus 13.70% with undoped TiO2. We have also compared the performance of PSCs with Sn-doped and Zn-doped TiO2. For the same dopant concentration, Sn-doped TiO2 offers 0.63% higher PCE than the Zn-doped counterpart. The results are in good agreement with reported experimental findings and provide a reliable means of evaluating PSC performance by combining first-principles (DFT) calculations with conventional device simulations.
More
Translated text
Key words
perovskite solar cells,solar cells,electron transport layer,dft-extracted,metal-doped
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined