谷歌浏览器插件
订阅小程序
在清言上使用

Electrochemical Insight into NaxCoO2 for the Oxygen Evolution Reaction and the Oxygen Reduction Reaction

CHEMISTRY OF MATERIALS(2021)

引用 22|浏览10
暂无评分
摘要
Layered NaxCoO2 provides multiple degrees of freedom for manipulating its structure and physical properties by tuning the Na concentration, leading to specific functionalities including thermoelectricity, superconductivity, and potentiality in Li-/Na-ion batteries. However, the contribution of varied Na to charge transfer, electrocatalytic kinetics, and energetics in terms of the electrochemical interface reaction for the oxygen evolution reaction (OER) in water splitting and the oxygen reduction reaction (ORR) in fuel cells is not yet fully understood. This work reveals that varied Na concentrations indirectly affect the electrochemical OER or ORR activity by changing the Co-O bond in the constituent CoO6 octahedron of NaxCoO2. Tuning the Na concentration gives rise to the unique evolution of the electronic configuration and subsequently further enhances the Co-O bond's covalency, which results in promoting the catalytic kinetics of OER and ORR. As the Fermi level descends deeper into the O 2p orbitals with increasing Na extraction, the lattice oxygen becomes active in the proton-electron transfer process, which is reflected in the pH and oxygen-concentration dependence of the OER activity. Based on the characterization of its electrochemical properties, the high electrocatalytic activity of Na0.75CoO2, which exhibits competent OER activity superior to that of IrO2, is rationalized. Meanwhile, intrinsic Na0.75CoO2 reveals a half-wave potential of 0.74VRHE for ORR. The evolution of the structure and the electronic configuration of NaxCoO2 related to its electrochemical properties enables further improved NaxCoO2-based catalysts for efficient electrochemical OER and ORR.
更多
查看译文
关键词
oxygen evolution reaction,na<i><sub>x</sub></i>coo<sub>2</sub>
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要