Pruning Residues Incorporation And Reduced Tillage Improve Soil Organic Matter Stabilization And Structure Of Salt-Affected Soils In A Semi-Arid Citrus Tree Orchard

SOIL & TILLAGE RESEARCH(2021)

引用 21|浏览17
暂无评分
摘要
Soil salinization is an emerging problem worldwide as a result of unsustainable land management practices and climate change. However, salt-affected soils under agricultural use could act as a C sink if these negative effects can be offset by combination of sustainable land management practices (SLM). In this study, we assessed the effect of (i) intensive tillage along with flood irrigation (IT); (ii) combination of no-tillage with pruning residues (branches and leaves) as mulch, and drip-irrigation (NT + PM); and (iii) combination of reduced tillage with the incorporation of pruning residues and drip-irrigation (RT + PI), on physico-chemical soil parameters, aggregate stability, amount and quality of organic matter fractions and soil organic carbon (SOC) sequestration in a lemon tree orchards (Citrus limon var. Verna) under semi-arid climate conditions. The RT + PI management system showed a decrease in salinity and bulk density, and increased soil porosity, soil OC and N stocks, and percentage of OC-rich macroaggregates as compared to the IT system. The aggregate-occluded particulate organic matter fraction (oPOM) played a key role in macroaggregate stability. The NT + PM treatment also showed positive effects on the investigated soil properties, but this was limited to the upmost topsoil (0-5 cm). The IT management system revealed highest values of salinity and bulk density, and considerably lower SOC stocks. Moreover, a degradation of soil structure with a low percentage of macroaggregates depleted in SOC was observed. We conclude that the incorporation of pruning residues in combination with reduced tillage and dripirrigation is an effective management system to improve soil structure and facilitate SOC sequestration. Therefore, conventional management systems based on intensive tillage and flood irrigation should be abandoned in salt-affected soils under semi-arid climate conditions in favour of systems with higher organic matter inputs incorporated into the soil combined with measures to reduce the salt content.
更多
查看译文
关键词
Drip-irrigation, Particulate organic matter, aggregate stability, Semi-arid agroecosystems, Irrigation, Soil organic carbon
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要