Chrome Extension
WeChat Mini Program
Use on ChatGLM

Fluorescent Sensor Array For High-Precision Ph Classification With Machine Learning-Supported Mobile Devices

DYES AND PIGMENTS(2021)

Cited 9|Views2
No score
Abstract
There is growing research interest from many scientific, healthcare, and industrial applications toward the development of high-precision optical pH sensors that cover a broad pH range. Despite enthusiastic endeavors, however, it remains challenging to develop cost-effective, high-precision, and broadband working paper-striptype optical pH measurement systems, particularly for on-site or in-the-field pH sensing applications. We develop a fluorescent array based on a KIz system for accurate pH level classification. Based on the indolizine fluorescent core skeleton, a library of 30 different pH-responsive fluorescent probes is rationally designed and efficiently synthesized. Spotting the compounds in a checkered pattern (5 x 6) allows for the development of a disposable compound array on wax-printed cellulose paper. Compounds sharing a single chemical core skeleton result in the interrogation of all the components of a system with a single excitation light, resulting in a simple system design for pH classification. Furthermore, we design a 3D-printed enclosure to capture the fluorescence pattern changes of the array by using an intelligent, smartphone-based, handheld pH detection system. Specifically, by exploiting a random forest-based machine learning algorithm on a smartphone, we can effectively analyze the fluorescence pattern changes. Our results suggest that our proposed system can classify pH levels in fine-grain (0.2 pH) units.
More
Translated text
Key words
Indolizine, Fluorescent compound array, Machine learning, pH sensing
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined