Microbiology of the American Smokeless Tobacco

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY(2021)

Cited 12|Views10
No score
Abstract
Smokeless tobacco products (STP) contain diverse microbial communities that contribute to the formation of harmful chemical byproducts. This is concerning since 300 million individuals around the globe are users of smokeless tobacco. Significant evidence has shown that microbial metabolic activities mediate the formation of carcinogens during manufacturing. In recent years, studies have revealed a series of additional health impacts that include lesions and inflammation of the oral mucosa and the gastrointestinal tract, as well as alterations of the endogenous microbiota. These findings are due to recent developments in molecular technologies that allowed researchers to better examine the microbial component of these products. This new information illustrates the scale of the STP microbiota and its diversity in the finished product that is sold for consumption. Additionally, the application of metagenomics and metatranscriptomics has provided the tools to look at phylogenies across bacterial, viral, and eukaryotic groups, their functional capacities, and viability. Here we present key examples of tobacco microbiology research that utilizes newer approaches and strategies to define the microbial component of smokeless tobacco products. We also highlight challenges in these approaches, the knowledge gaps being filled, and those gaps that warrant further study. A better understanding of the microbiology of STP brings vast public health benefits. It will provide important information for the product consumer, impact manufacturing practices, and provide support for the development of attainable and more meaningful regulatory goals. Key points Newer technologies allowed quicker and more comprehensive identification of microbes in tobacco samples, encapsulating microorganisms difficult or impossible to culture. Current research in smokeless tobacco microbiology is filling knowledge gaps previously unfilled due to the lack of suitable approaches. The microbial ecology of smokeless tobacco presents a clearer picture of diversity and variability not considered before.
More
Translated text
Key words
Smokeless tobacco microbiology, Microbial communities, 16SrRNA sequencing
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined