Light-activated nitric-oxide overproduction theranostic nanoplatform based on long-circulating biomimetic nanoerythrocyte for enhanced cancer gas therapy

SCIENCE CHINA-CHEMISTRY(2021)

引用 11|浏览12
暂无评分
摘要
The limited intratumoral perfusion of nitric oxide (NO)-carrying nanoparticles into solid tumors caused by the inherent biological barriers in vivo greatly attenuates their generated efficacy. Herein, through entrapping heat-sensitive NO donors (BNN6) on mesoporous polydopamine nanoparticles (M-PDA) and subsequently enveloping with red blood cells membranes, a heat-responsive biomimetic theranostic nanoerythrocyte (M/B@R) is developed to boost NO-based cancer therapy. The reserved intact structure of red blood cells membranes (RBCm) endows M/B@R with superior biosafety and stealth properties for prolonged circulation time and subsequent enhanced tumor accumulation. Once internalized in tumors and excited by near-infrared light (NIR, 808 nm) irradiation, M/B@R can not only yield plenty of heat for photothermal therapy (PTT) but also achieve the overproduction of NO for highly-efficient NO gas therapy due to its high loading capacity and NIR-absorbing property of M-PDA. The generated NO further ensures the formation of ONOO − which possesses remarkable toxicity to tumor as well as alleviating tumor hypoxia. It is found that M/B@R with NIR as the excitation source can significantly induce synthetic lethality to tumors via the hyperthermia, DNA damage and the ease of tumor hypoxia. Simultaneously, M/B@R also exhibits the potential for bimodal fluorescence and photothermal imaging. The RBCm-camouflaged NO delivery nanoplatform with bimodal imaging capability in this work may provide a new combinatorial paradigm to induce PTT/NO for cancer theranostic applications.
更多
查看译文
关键词
nitric oxide,biomimetic nanoerythrocyte,PTT/NO synergistic therapy,bimodal imaging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要