Impact Of The Channel Length On Molybdenum Disulfide Field Effect Transistors With Hafnia-Based High-K Dielectric Gate

AIP ADVANCES(2021)

引用 4|浏览10
暂无评分
摘要
Field effect transistors (FETs) using two-dimensional molybdenum disulfide (MoS2) as the channel material has been considered one of the most potential candidates for future complementary metal-oxide-semiconductor technology with low power consumption. However, the understanding of the correlation between the device performance and material properties, particularly for devices with scaling-down channel lengths, is still insufficient. We report in this paper back-gate FETs with chemical-vapor-deposition grown and transferred MoS2 and Zr doped HfO2 ((Hf,Zr)O-2, HZO) high-k dielectric gates with channel lengths ranging from 10 to 30 mu m with a step of 5 mu m. It has been demonstrated that channels with the length to width ratio of 0.2 lead to the most superior performance of the FETs. The MoS2/HZO hybrid FETs show a stable threshold voltage of similar to 1.5 V, current on/off ratio of >10(4), and field effect mobility in excess of 0.38 cm(2) V-1 s(-1). The impact of the channel lengths on FET performance is analyzed and discussed in depth. A hysteresis loop has been observed in the I-ds - V-gs characteristics of the hybrid FETs, which has been further studied and attributed to the charge effect at the interfaces. The HZO films show a relatively weak ferroelectric orthorhombic phase and thus serve mainly as the high-k dielectric gate. Charge trapping in the HZO layer that might induce hysteresis has been discussed. Our results show that MoS2/HZO hybrid FETs possess great potential in future low power and high-speed integrated circuits, and future work will focus on further improvement of the transistor performances using ferroelectric HZO films and the study of devices with even shorter MoS2 channels. (C) 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要