Catalytic Amyloids As Novel Synthetic Hydrolases

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES(2021)

Cited 7|Views4
No score
Abstract
Amyloids are supramolecular assemblies composed of polypeptides stabilized by an intermolecular beta-sheet core. These misfolded conformations have been traditionally associated with pathological conditions such as Alzheimer's and Parkinson ' s diseases. However, this classical paradigm has changed in the last decade since the discovery that the amyloid state represents a universal alternative fold accessible to virtually any polypeptide chain. Moreover, recent findings have demonstrated that the amyloid fold can serve as catalytic scaffolds, creating new opportunities for the design of novel active bionanomaterials. Here, we review the latest advances in this area, with particular emphasis on the design and development of catalytic amyloids that exhibit hydrolytic activities. To date, three different types of activities have been demonstrated: esterase, phosphoesterase and di-phosphohydrolase. These artificial hydrolases emerge upon the self-assembly of small peptides into amyloids, giving rise to catalytically active surfaces. The highly stable nature of the amyloid fold can provide an attractive alternative for the design of future synthetic hydrolases with diverse applications in the industry, such as the in situ decontamination of xenobiotics.
More
Translated text
Key words
amyloids, peptides, esterase, phosphatase, di-phosphohydrolase
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined