Chrome Extension
WeChat Mini Program
Use on ChatGLM

Hydroxyethyl Cellulose As A Rheological Additive For Tuning The Extrusion Printability And Scaffold Properties

3D PRINTING AND ADDITIVE MANUFACTURING(2021)

Cited 7|Views26
No score
Abstract
Bioink, a key element of three-dimensional (3D) bioprinting, is frequently engineered to achieve improved printing performance. Viscoelasticity related to rheological properties is correlative of the printability of bioink for extrusion bioprinting, which affects the complexity of printing 3D structures. This article shows the use of hydroxyethyl cellulose (HEC) as a rheological additive for engineering bioink to improve the printability without reducing the biocompatibility. Different concentrations of HEC were added to four types of bioink, namely, reagent-crosslinked, temperature-dependent phase change, ultraviolet-polymerized, and composite hydrogel bioinks, to investigate the effect on the viscoelasticity properties, print fidelity, and other printed scaffold properties. The results indicate that HEC is able to increase the rheological properties by 100 times to stabilize complex structures and improve the printing fidelity to narrow the gap between the design value and theoretical value, even converting nonviscous ink into directly printable ink, as well as tune the swelling ratio for better molecular permeability. The degradation of bioink can also be tuned by the addition of HEC. Moreover, this bioink is biocompatible for cell lines and primary cells. HEC is expected to be widely used in 3D extrusion-based bioprinting.
More
Translated text
Key words
3D printing, extrusion, viscoelasticity, additive manufacturing
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined