Monitoring Pilot-Scale Polyhydroxyalkanoate Production From Fruit Pulp Waste Using Near-Infrared Spectroscopy

BIOCHEMICAL ENGINEERING JOURNAL(2021)

引用 6|浏览3
暂无评分
摘要
Given the current plastic disposal global crisis, biodegradable polymers may have an important role in leading the way towards a more sustainable plastic industry. Polyhydroxyalkanoates (PHA) are biobased and biodegradable aliphatic polyesters synthesized by bacteria and stored as intracellular granules. In this study, PHA was produced at pilot scale by a mixed microbial culture (MMC) fed with fermented fruit pulp waste. The PHA accumulation reactor was monitored at line by near-infrared (NIR) spectroscopy to develop and optimize partial least squares (PLS) calibration models for predicting bulk PHA concentration and intracellular PHA content. The PLS models were subjected to internal cross-validation (62 spectra) and the ones with best performance were validated with an external test set (12 spectra). For bulk PHA concentration, a root mean squared error of prediction (RMSEP) of 0.69 g/L and a coefficient of determination (R-2) of 0.89 were attained, while intracellular PHA content was predicted with a RMSEP of 14.6% and a R-2 of 0.86. These NIR-based calibration models demonstrated a great potential for the real-time monitoring of the MMC pilot-scale PHA production from a complex fruit pulp waste substrate. This approach can be used for in situ control of the pulse-wise feeding strategy of the PHA accumulation stage, minimizing PHA consumption triggered by carbon source depletion and contributing for an improved global process efficiency and productivity.
更多
查看译文
关键词
Polyhydroxyalkanoates, Mixed microbial culture, Fruit pulp waste, Bioreactor monitoring, Near-infrared spectroscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要