Chrome Extension
WeChat Mini Program
Use on ChatGLM

Self-assembled magnetic heterostructure of Co/DLC films

NANOTECHNOLOGY(2021)

Cited 2|Views16
No score
Abstract
In order to adapt to the quick and large amount of necessity in data flow for 5G cloud generation, it is necessary to develop a technology of warm storage device in market which takes a great balance between the reading/writing performance and the price per storage capacity. The technologies of warm storage devices are assumed to adopt phase change memory (PCM), resistive random access memory or magnetoresistive random access memory which have the highest possibilities to 5G structures and magnetic properties of Co on non-hydrogenated diamond like carbon (DLC)/Si(100) films and Co/DLC interface are investigated. The self-assembled magnetic heterostructure is firstly reported in hexagonal close packing Co layers perpendicular magnetic anisotropy (PMA) on Co carbide layers (in-plane) during Co deposited on DLC/Si(100). A PMA/in-plane magnetic heterostructure is expected to have the highest switching current to the energy barrier ratio of near 4 in previous report, which has great potential for developing warm memory devices. Based on these unique characteristics, we provide a novel design called magnetic anisotropy-phase change memory (Mani-PCM) which can impact the developing blueprint of memory. The working process of Mani-PCM includes in set, reset and read states as a universal PCM. This brand new technology is highly promising as warm memory devices including high reading/writing performance and economical price per storage capacity.
More
Translated text
Key words
self-assembled,magnetic heterostructure,perpendicular magnetic anisotropy (PMA),PMA,in-plane interface,non-hydrogenated diamond like carbon (DLC)
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined