Finite-size correction for slab supercell calculations of materials with spontaneous polarization

NPJ COMPUTATIONAL MATERIALS(2021)

引用 18|浏览9
暂无评分
摘要
The repeated slab approach has become a de facto standard to accurately describe surface properties of materials by density functional theory calculations with periodic boundary conditions. For materials exhibiting spontaneous polarization, we show that the conventional scheme of passivation with pseudo hydrogen is unable to realize a charge-neutral surface. The presence of a net surface charge induces via Gauss’s law a macroscopic electric field through the slab and results in poor size convergence with respect to the thickness of the slab. We propose a modified passivation method that accounts for the effect of spontaneous polarization, describes the correct bulk limits and boosts convergence with respect to slab thickness. The robustness, reliability, and superior convergence of energetics and electronic structure achieved by the proposed method are demonstrated using the example of polar ZnO surfaces.
更多
查看译文
关键词
Computational methods,Electronic structure,Surfaces,interfaces and thin films,Two-dimensional materials,Materials Science,general,Characterization and Evaluation of Materials,Mathematical and Computational Engineering,Theoretical,Mathematical and Computational Physics,Computational Intelligence,Mathematical Modeling and Industrial Mathematics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要