Defect-Rich And Metal-Free N, S Co-Doped 3d Interconnected Mesoporous Carbon Material As An Advanced Electrocatalyst Towards Oxygen Reduction Reaction

CARBON(2021)

引用 37|浏览5
暂无评分
摘要
Researching of high performance and low-cost oxygen reduction reaction (ORR) electrocatalysts is one of the core issues for the rapid development of energy conversion and storage devices. Herein, a N and S dual-doped three-dimensional (3D) interconnected mesoporous carbon catalyst (CNS) was constructed via a facile hydrothermal-pyrolysis strategy. Benefiting from the 3D interconnected mesoporous architecture, CNS was endowed with a fast oxygen mass transfer rate together with plentiful of accessible active centers on the surface. Its ORR half-wave potential (E-1/2, 0.87 V) surpasses commercial Pt/C catalyst 50 mV in alkaline media. Its E-1/2 negatively shifts only 2 mV after 8000 cycles in half-cell tests. More importantly, the zinc-air battery with CNS as cathode catalyst delivers an excellent high peak power density of 144 mW cm(-2). DFT calculation results show that when N and S are co-doped, the spin density of adjacent carbon atoms can be changed, thereby increasing the CNS's binding energy to oxygen and conductivity. The excellent comprehensive performance of CNS undoubtedly discloses its potential practical application in the energy conversation and storage area. (C) 2021 Elsevier Ltd. All rights reserved.
更多
查看译文
关键词
S co-doped, Carbon materials, Metal-free, Oxygen reduction reaction, Zn-air batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要