Wasted Photons: Photogeneration Yield And Charge Carrier Collection Efficiency Of Hematite Photoanodes For Photoelectrochemical Water Splitting

ENERGY & ENVIRONMENTAL SCIENCE(2021)

引用 20|浏览4
暂无评分
摘要
Hematite (alpha-Fe2O3) is a leading photoanode candidate for photoelectrochemical water splitting. Despite extensive research efforts, the champion hematite photoanodes reported to date have achieved less than half of the maximal photocurrent predicted by its bandgap energy. Here we show that this underachievement arises, to a large extent, because of unproductive optical excitations that give rise to localized electronic transitions that do not generate electron-hole pairs. A comprehensive method for extraction of the photogeneration yield spectrum, the wavelength-dependent fraction of absorbed photons that generate electron-hole pairs, and the spatial charge carrier collection efficiency is presented, and applied for a thin (32 nm) film hematite photoanode. Its photogeneration yield is less than unity across the entire absorption range, limiting the maximal photocurrent that may be attained in an ideal hematite photoanode to about half of the theoretical limit predicted without accounting for this effect.
更多
查看译文
关键词
photoelectrochemical water splitting,hematite photoanodes,photogeneration yield,charge carrier collection efficiency,photons
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要