Fabricating Hydrogels To Mimic Biological Tissues Of Complex Shapes And High Fatigue Resistance

MATTER(2021)

引用 66|浏览16
暂无评分
摘要
Biological tissues, such as heart valves and vocal cords, function through complex shapes and high fatigue resistance. Achieving both attributes with synthetic materials is hitherto an unmet challenge. Here we meet this challenge with hydrogels of heterogeneous structures. We fabricate a three-dimensional hydrogel skeleton by stereolithography and a hydrogel matrix by cast. Both the skeleton and matrix are elastic and stretchable, but the skeleton is much stiffer than the matrix, and their polymer networks entangle topologically. When such a hydrogel is stretched, the compliance of the matrix deconcentrates stress in the skeleton and amplifies fatigue resistance. We fabricate a homogeneous hydrogel and a heterogeneous hydrogel, each in the shape of a human heart valve. Subject to cyclic pressure, the former fractures in similar to 560 cycles but the latter is intact after 50,000 cycles. Soft materials of complex shapes and high fatigue resistance open broad opportunities for applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要