An Assessment Of Pet Dose Reduction With Penalized Likelihood Image Reconstruction Using A Computationally Efficient Model Observer

MEDICAL IMAGING 2020: PHYSICS OF MEDICAL IMAGING(2021)

引用 0|浏览1
暂无评分
摘要
Developing PET reconstruction algorithms with improved low-count capabilities may provide a timely and cost-effective means of reducing radiation dose in promising clinical applications such as immuno-PET that require long-lived radiotracers. For many PET clinics, the reconstruction protocol consists of postsmoothed ordered-sets expectation-maximization (OSEM) reconstruction, but penalized likelihood methods based on total-variation (TV) regularization could substantially reduce dose. We performed a task-based comparison of postsmoothed OSEM and higher-order TV (HOTV) reconstructions using simulated images of a contrast-detail phantom. An anthropomorphic visual-search model observer read the images in a location-known receiver operating characteristic (ROC) format. Acquisition counts, target uptake, and target size were study variables, and the OSEM postfiltering was task-optimized based on count level. A psychometric analysis of observer performance for the selected task found that the HOTV algorithm allowed a two-fold reduction in dose compared to the optimized OSEM algorithm.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要