Using Fission-Track Radiography Coupled With Scanning Electron Microscopy For Efficient Identification Of Solid-Phase Uranium Mineralogy At A Former Uranium Pilot Mill (Grand Junction, Colorado)

GEOSCIENCES(2021)

引用 7|浏览1
暂无评分
摘要
At a former uranium pilot mill in Grand Junction, Colorado, mine tailings and some subpile sediments were excavated to various depths to meet surface radiological standards, but residual solid-phase uranium below these excavation depths still occurs at concentrations above background. The combination of fission-track radiography and scanning electron microscope energy-dispersive X-ray spectroscopy (SEM-EDS) provides a uniquely efficient and quantitative way of determining mineralogic associations of uranium that can influence uranium mobility. After the creation of sample thin sections, a mica sheet is placed on those thin sections and irradiated in a nuclear research reactor. Decay of the irradiated uranium creates fission tracks that can be viewed with a microscope. The fission-track radiography images indicate thin section sample areas with elevated uranium that are focus areas for SEM-EDS work. EDS spectra provide quantitative elemental data that indicate the mineralogy of individual grains or grain coatings associated with the fission-track identification of elevated uranium. For the site in this study, the results indicated that uranium occurred (1) with coatings of aluminum-silicon (Al/Si) gel and gypsum, (2) dispersed in the unsaturated zone associated with evaporite-type salts, and (3) sorbed onto organic carbon. The Al/Si gel likely formed when low-pH waters were precipitated during calcite buffering, which in turn retained or precipitated trace amounts of Fe, As, U, V, Ca, and S. Understanding these mechanisms can help guide future laboratory and field-scale efforts in determining long-term uranium release rates to groundwater.
更多
查看译文
关键词
fission-track radiography, scanning electron microscope, uranium
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要