Effect of melting heat transfer on electromagnetohydrodynamic non-newtonian nanofluid flow over a riga plate with chemical reaction and arrhenius activation energy

The European Physical Journal Plus(2021)

Cited 9|Views0
No score
Abstract
This article deals with the electromagnetohydrodynamic Casson Nanofluid flow induced by a stretching Riga plate in a non-Darcian porous medium under the influence of internal energy change, Arrhenius activation energy, chemical reaction and Melting heat transfer. The flow motion is induced as a result of the introduced mechanism that capable of controlling or assisting a weakly hydromagnetic fluid flow process called the Riga plate. In most of the literature, the thermophysical properties of the fluid are assumed to be constant. However, this present study bridges this gap by assuming that viscosity, conductivity and diffusivity are all temperature dependent. Also, the exponential decaying Grinberg term is used as a resistive force in this investigation due to the electromagnetic properties of the Riga plate in the momentum conservation equation. The resulting coupled nonlinear ordinary differential equations are solved by optimal homotopy analysis method (OHAM) and validated with Galerkin weighted residual method (GWRM). Analyses reveal that the Casson fluid exhibits a solid characteristic when yield stress is more than the shear stress. The thermal profile raised with an increase in melting and Casson parameter. Also, also the chemical reaction parameter reduces the nanoparticle volume fraction. Moreover, this article includes some future recommendations. These results will assist the engineers in designing applications that require high heat and mass transfer rates.
More
Translated text
Key words
nanofluid,heat transfer,melting,non-newtonian
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined