Enhanced vertical mixing in the glacial ocean inferred from sedimentary carbon isotopes

COMMUNICATIONS EARTH & ENVIRONMENT(2021)

引用 6|浏览0
暂无评分
摘要
Reconstructing the circulation, mixing and carbon content of the Last Glacial Maximum ocean remains challenging. Recent hypotheses suggest that a shoaled Atlantic meridional overturning circulation or increased stratification would have reduced vertical mixing, isolated the abyssal ocean and increased carbon storage, thus contributing to lower atmospheric CO 2 concentrations. Here, using an ensemble of ocean simulations, we evaluate impacts of changes in tidal energy dissipation due to lower sea levels on ocean mixing, circulation, and carbon isotope distributions. We find that increased tidal mixing strengthens deep ocean flow rates and decreases vertical gradients of radiocarbon and δ 13 C in the deep Atlantic. Simulations with a shallower overturning circulation and more vigorous mixing fit sediment isotope data best. Our results, which are conservative, provide observational support that vertical mixing in the glacial Atlantic may have been enhanced due to more vigorous tidal dissipation, despite shoaling of the overturning circulation and increases in stratification.
更多
查看译文
关键词
Palaeoceanography,Palaeoclimate,Physical oceanography,Environment,general,Earth Sciences
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要